

Natural Language Processing

Yue Zhang Westlake University

Chapter 4

Discriminative Linear Classifiers

Contents

WestlakeNLP

- 4.1 Log-Linear Models
 - 4.1.1 Training binary log-linear models
 - 4.1.2 Training multi-class log-linear models
 - 4.1.3 Using log-linear models for classification
- 4.2 SGD training of SVMs
 - 4.2.1 Binary classification
 - 4.2.2 A perceptron training objective function
- 4.3 A Generalized Linear Model for Classification
 - 4.3.1 Unified Online Training
 - 4.3.2 Loss Functions
 - 4.3.3 Regularization
- 4.4 Working with Multiple Models
 - 4.4.1 Comparing model performances
 - 4.4.2 Ensemble models

Contents

WestlakeNLP

- 4.1 Log-Linear Models
 - 4.1.1 Training binary log-linear models
 - 4.1.2 Training multi-class log-linear models
 - 4.1.3 Using log-linear models for classification
- 4.2 SGD training of SVMs
 - 4.2.1 Binary classification
 - 4.2.2 A perceptron training objective function
- 4.3 A Generalized Linear Model for Classification
 - 4.3.1 Unified Online Training
 - 4.3.2 Loss Functions
 - 4.3.3 Regularization
- 4.4 Working with Multiple Models
 - 4.4.1 Comparing model performances
 - 4.4.2 Ensemble models

Review linear models

• Input $x = w_1, w_2, ..., w_n$ output class c

Feature vector	Naïve Bayes Parameter Vector	SVM Parameter Vector	Perceptron Parameter Vector
$\phi(x,c) = \\ \\ \end{cases}$	$ \begin{aligned} \theta &= \\ &< \log P(c_1), \log P(w_1 c_1), \log P(w_2 c_1),, \log P(w_{ V } c_1), \\ &\log P(c_2), \log P(w_1 c_2), \log P(w_2 c_2),, \log P(w_{ V } c_2), \\ &\dots \\ &\log P(c_{ C }), \log P(w_1 c_{ C }), \log P(w_2 c_{ C }),, \log P(w_{ V } c_{ C }) > \\ & \text{Each instance trained separately using MLE.} \end{aligned} $	Trained together with a large- margin objective	Trained together online.

Discriminative linear classifiers

WestlakeNLP

• The general form:

$$score(x, y) = \vec{\theta} \cdot \vec{\phi}(x, y)$$

- Instances :
 - SVMs
 - Perceptrons
- Advantages over generative models (e.g. Naïve Bayes):
 - flexibility in feature definition
 - a direct training goal of minimizing prediction errors.
- Disadvantage:
 - No probabilistic interpretation

Log-linear Models

- Probabilistic discriminative linear model
- Motivation: the Naive Bayes classifier:

$$P(c|d) \propto \prod_{i=1}^{n} P(w_i|c)P(c)$$

The log form of P(c | d) is a linear model:

 $logP(c|d) \propto \sum_{i=1}^n logP(w_i|c) + logP(c)$

which is similar to a discriminative linear model.

• Design: $P(y|x) \propto exp\left(\vec{\theta} \cdot \vec{\phi}(x,y)\right)$

Log-linear model for multi-class classification **V** WestlakeNLP

- Inputs : $x \in x$
- Outputs : $y \in C$



Which can also be described as: $P(y|x) = softmax_{C} \left(\vec{\theta} \cdot \vec{\phi}(x, y) \right)$

Log-linear model for binary classification

• **Sigmoid function** is an exponential function that maps a number in [-∞, ∞] to [0,1].

$$\sigma(x) = \frac{e^x}{1 + e^x}$$

• a binary classifier $score(y=+1) = \vec{\theta} \cdot \vec{\phi}(x) \in [-\infty, +\infty]$ can be mapped into a probabilistic classifier

$$P(y = +1|x) = \sigma\left(\vec{\theta} \cdot \vec{\phi}(x)\right) = \frac{e^{\vec{\theta} \cdot \vec{\phi}(x)}}{1 + e^{\vec{\theta} \cdot \vec{\phi}(x)}}$$
$$P(y = -1|x) = 1 - \sigma\left(\vec{\theta} \cdot \vec{\phi}(x)\right) = \frac{1}{1 + e^{\vec{\theta} \cdot \vec{\phi}(x)}}$$

WestlakeNLP

Contents

WestlakeNLP

- 4.1 Log-Linear Models
 - 4.1.1 Training binary log-linear models
 - 4.1.2 Training multi-class log-linear models
 - 4.1.3 Using log-linear models for classification
- 4.2 SGD training of SVMs
 - 4.2.1 Binary classification
 - 4.2.2 A perceptron training objective function
- 4.3 A Generalized Linear Model for Classification
 - 4.3.1 Unified Online Training
 - 4.3.2 Loss Functions
 - 4.3.3 Regularization
- 4.4 Working with Multiple Models
 - 4.4.1 Comparing model performances
 - 4.4.2 Ensemble models

Training log-linear models

WestlakeNLP

- We want to train the parameters $\vec{\theta}$ so that the scores $P(\cdot)$ truly represent probabilities.
- Training examples : $D = \{(x_i, y_i)\}|_{i=1}^N$

• Using maximum likelihood estimation (MLE) : The training objective is

$$P(Y|X) = \prod_{i} P(y_i|x_i)$$

which is maximizing the conditional likelihood of training data.

Training binary log-linear models

WestlakeNLP

• Given $P(y = +1|x) = \frac{e^{\vec{\theta} \cdot \vec{\phi}(x)}}{1 + e^{\vec{\theta} \cdot \vec{\phi}(x)}}$, our MLE training objective is

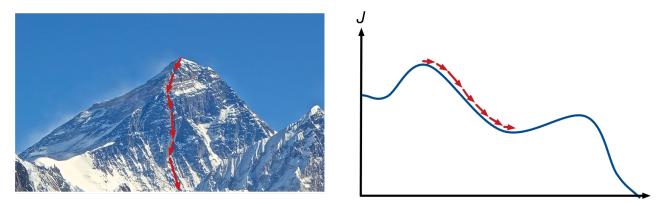
$$P(Y|X) = \prod_{i} P(y_i|x_i) = \prod_{i^+} P(y_i = +1|x_i) \prod_{i^-} P(y_i = -1|x_i)$$

• Maximizing P(Y | X) can be achieved by maximizing

$$\begin{split} \log P(Y \mid X) \\ &= \sum_{i} \log P(y_{i} \mid x_{i}) \\ &= \sum_{i+} \log P(y_{i} = +1 \mid x_{i}) + \sum_{i-} \log P(y_{i} = -1 \mid x_{i}) \\ &= \sum_{i+} \log \frac{e^{\vec{\theta} \cdot \vec{\phi}(x_{i})}}{1 + e^{\vec{\theta} \cdot \vec{\phi}(x_{i})}} + \sum_{i-} \log \frac{1}{1 + e^{\vec{\theta} \cdot \vec{\phi}(x_{i})}} \\ &= \sum_{i+} \left(\vec{\theta} \cdot \vec{\phi}(x_{i}^{+}) - \log \left(1 + e^{\vec{\theta} \cdot \vec{\phi}(x_{i}^{+})} \right) \right) - \sum_{i-} \log \left(1 + e^{\vec{\theta} \cdot \vec{\phi}(x_{i}^{-})} \right) \end{split}$$

Gradient descent

WestlakeNLP



• For log-linear model, the gradient of the objective is :

$$\begin{split} \vec{g} &= \frac{\partial \log P(Y|X)}{\vec{\theta}} \\ &= \sum_{i^+} \left(\vec{\varphi}(x_i) - \frac{e^{\vec{\theta} \cdot \vec{\varphi}(x_i)}}{1 + e^{\vec{\theta} \cdot \vec{\varphi}(x_i)}} \vec{\varphi}(x_i) \right) - \sum_{i^-} \left(\frac{e^{\vec{\theta} \cdot \vec{\varphi}(x_i)}}{1 + e^{\vec{\theta} \cdot \vec{\varphi}(x_i)}} \vec{\varphi}(x_i) \right) \\ &= \sum_{i^+} \left(1 - \frac{e^{\vec{\theta} \cdot \vec{\varphi}(x_i)}}{1 + e^{\vec{\theta} \cdot \vec{\varphi}(x_i)}} \right) \vec{\varphi}(x_i) - \sum_{i^-} \left(\frac{e^{\vec{\theta} \cdot \vec{\varphi}(x_i)}}{1 + e^{\vec{\theta} \cdot \vec{\varphi}(x_i)}} \right) \vec{\varphi}(x_i) \\ &= \sum_{i^+} \left(1 - P(y = +1|x_i) \right) \vec{\varphi}(x_i) - \sum_{i^-} P(y = +1|x_i) \vec{\varphi}(x_i) \end{split}$$

Gradient descent

• A simple numerical solution to the minimization of convex functions.

Gradient Descent

Inputs: An objective function F; Initialization: $\vec{\theta}_0 \leftarrow random(), t \leftarrow 0$; repeat $\begin{vmatrix} \vec{g}_t \leftarrow \nabla_{\vec{\theta}_t} F(\vec{\theta}_t) ; \\ \vec{\theta}_{t+1} \leftarrow \vec{\theta}_t - \alpha \vec{g}_t; \\ t \leftarrow t+1; \\ until \ ||\vec{\theta}_t - \vec{\theta}_{t-1}|| < \epsilon; \\ Outputs: \vec{\theta}_t; \end{vmatrix}$

- Here *α* is the learning rate (hyper-parameter)
- Finding \vec{g} at each iteration can be computationally inefficient.

Gradient descent

- General numerical optimization method. SVM can be optimized with gradient descent too.
- Converges to a local minimum dependent on the initialization.
- Can be slow when the number of training instances *N* is large.

Stochastic gradient descent (SGD)

Stochastic Gradient Descent

Inputs: An objective function $F(x, y, \vec{\theta})$, and $D = \{(x_i, y_i)\}|_{i=1}^N$; **Initialisation**: $\vec{\theta}_0 \leftarrow random(), \alpha \leftarrow \alpha_0, t \leftarrow 0;$ repeat $\begin{vmatrix} \vec{\theta}_{t+1} \leftarrow \vec{\theta}_t; \\ \mathbf{for} \ i \in [1, \dots, N] \ \mathbf{do} \\ & \left| \begin{array}{c} \vec{g}_{t,i} \leftarrow \frac{\partial F(x_i, y_i, \vec{\theta}_{t+1})}{\partial \vec{\theta}_{t+1}}; \\ \vec{\theta}_{t+1} \leftarrow \vec{\theta}_{t+1} - \alpha \vec{g}_{t,i}; \\ t \leftarrow t+1; \\ \end{matrix} \right.$ until t = T; **Outputs**: $\vec{\theta}_t$

• SGD updates model parameters more frequently, and converge much faster than gradient descents

Stochastic gradient descent (SGD)

WestlakeNLP

SGD for binary classification log-linear model

Inputs: $D = \{(x_i, y_i)\}|_{i=1}^N$; **Initialization** $\vec{\theta} \leftarrow \vec{0}, \alpha \leftarrow \alpha_0, t \leftarrow 0$; repeat for $i \in [1 \dots N]$ do $P(y = +1|x_i) \leftarrow \frac{e^{\vec{\theta} \cdot \vec{\phi}(x_i)}}{1 + e^{\vec{\theta} \cdot \vec{\phi}(x_i)}};$ if $y_i = +1$ then $| \vec{\theta} \leftarrow \vec{\theta} - \alpha (P(y = +1|x_i) - 1)\vec{\phi}(x_i);$ else $| \vec{\theta} \leftarrow \vec{\theta} - \alpha P(y = +1|x_i)\vec{\phi}(x_i);$ $t \leftarrow t + 1;$ until t = T; Outputs: $\vec{\theta}$

$$\begin{split} \vec{g} &= \frac{\partial \log P(Y|X)}{\vec{\theta}} \\ &= \sum_{i^+} \left(\vec{\varphi}(x_i) - \frac{e^{\vec{\theta} \cdot \vec{\varphi}(x_i)}}{1 + e^{\vec{\theta} \cdot \vec{\varphi}(x_i)}} \vec{\varphi}(x_i) \right) - \sum_{i^-} \left(\frac{e^{\vec{\theta} \cdot \vec{\varphi}(x_i)}}{1 + e^{\vec{\theta} \cdot \vec{\varphi}(x_i)}} \vec{\varphi}(x_i) \right) \\ &= \sum_{i^+} \left(1 - \frac{e^{\vec{\theta} \cdot \vec{\varphi}(x_i)}}{1 + e^{\vec{\theta} \cdot \vec{\varphi}(x_i)}} \right) \vec{\varphi}(x_i) - \sum_{i^-} \left(\frac{e^{\vec{\theta} \cdot \vec{\varphi}(x_i)}}{1 + e^{\vec{\theta} \cdot \vec{\varphi}(x_i)}} \right) \vec{\varphi}(x_i) \\ &= \sum_{i^+} \left(1 - P(y = +1|x_i) \right) \vec{\varphi}(x_i) - \sum_{i^-} P(y = +1|x_i) \vec{\varphi}(x_i) \end{split}$$

Negated for positive samples $(P(y = +1|x_i) - 1)\vec{\phi}(x_i)$ Negated For negative samples $P(y = +1|x_i)\vec{\phi}(x_i)$

Contents

WestlakeNLP

- 4.1 Log-Linear Models
 - 4.1.1 Training binary log-linear models

• 4.1.2 Training multi-class log-linear models

- 4.1.3 Using log-linear models for classification
- 4.2 SGD training of SVMs
 - 4.2.1 Binary classification
 - 4.2.2 A perceptron training objective function
- 4.3 A Generalized Linear Model for Classification
 - 4.3.1 Unified Online Training
 - 4.3.2 Loss Functions
 - 4.3.3 Regularization
- 4.4 Working with Multiple Models
 - 4.4.1 Comparing model performances
 - 4.4.2 Ensemble models

Multi-class log-linear models

- For training pairs $\vec{\phi}(x_i, y_i)$, where $y_i \in C, |C| \ge 2$. The probability of $y_i = c, c \in C$ is: $P(y_i = c | x_i) = softmax \left(\vec{\theta} \cdot \vec{\phi}(x_i, c)\right) = \frac{e^{\vec{\theta} \cdot \vec{\phi}(x_i, c)}}{\sum_{c' \in C} e^{\vec{\theta} \cdot \vec{\phi}(x_i, c')}}$
- The log-likelihood of *D* is $logP(Y|X) = \sum_{i} logP(y_{i}|x_{i}) = \sum_{i} \left(\vec{\theta} \cdot \vec{\phi}(x_{i}, y_{i}) - log\left(\sum_{c \in C} e^{\vec{\theta} \cdot \vec{\phi}(x_{i}, c)}\right) \right)$
- For each training example, $logP(y_i|x_i) = \vec{\theta} \cdot \vec{\phi}(x_i, y_i) - log\left(\sum_{c \in C} e^{\vec{\theta} \cdot \vec{\phi}(x_i, c)}\right)$
- The local gradient is:

$$\vec{g} = \frac{\partial \log P(y_i | x_i)}{\partial \vec{\theta}} = \sum_{c \in C} \left(\vec{\phi}(x_i, y_i) - \vec{\phi}(x_i, c) \right) P(y = c | x_i)$$

Multi-class log-linear models

WestlakeNLP

SGD training for multi-class log-linear models

```
Inputs: D = \{(x_i, y_i)\}|_{i=1}^N;
     Initialisation \vec{\theta} \leftarrow \vec{0}, \alpha \leftarrow \alpha_0, t \leftarrow 0;
repeat
      until t = T;
     Outputs: \vec{\theta}
```

Mini-batch SGD

A compromise between gradient descent and SGD training.

Split the set of training examples *D* into several equal-sized subsets $D_1, D_2, ..., D_M$, each containing *N*/*M* training examples.

The mini-batch size *N*/*M* controls the tradeoff between efficiency and accuracy of approximation.

Mini-batch SGD

Mini-batch gradient descent for binary classification

```
Inputs: D = \{(x_i, y_i)\}|_{i=1}^N;
Initialisation: \vec{\theta} \leftarrow random(), \alpha \leftarrow \alpha_0, t \leftarrow 0;
for i \in [1, \ldots, M] do
     D_i \leftarrow \{(x_j, y_j)\}\Big|_{j=1+(i-1)*\frac{N}{M}}^{i*\frac{N}{M}};
repeat
        for i \in [1, \ldots, M] do
               \vec{g} \leftarrow \vec{0};
               for j \in [1, \dots, |D_i|] do

P(y = +1|x_j^i) \leftarrow \frac{e^{\vec{\theta}_t \cdot \vec{\phi}(x_j^i)}}{1 + e^{\vec{\theta}_t \cdot \vec{\phi}(x_j^i)}};
                      if y_i = +1 then
                            \vec{g} \leftarrow \vec{g} + \left(1 - P(y = +1|x_i^j)\right) \vec{\phi}(x_i^j);
                        else
               \begin{vmatrix} & | & \vec{g} \leftarrow \vec{g} + P(y = +1 | x_i^j) \vec{\phi}(x_i^j); \\ & \vec{\theta} \leftarrow \vec{\theta} - \alpha \vec{g}; \end{vmatrix} 
        t \leftarrow t + 1:
until t = T;
Outputs: \vec{\theta}
```

Contents

WestlakeNLP

- 4.1 Log-Linear Models
 - 4.1.1 Training binary log-linear models
 - 4.1.2 Training multi-class log-linear models
 - 4.1.3 Using log-linear models for classification
- 4.2 SGD training of SVMs
 - 4.2.1 Binary classification
 - 4.2.2 A perceptron training objective function
- 4.3 A Generalized Linear Model for Classification
 - 4.3.1 Unified Online Training
 - 4.3.2 Loss Functions
 - 4.3.3 Regularization
- 4.4 Working with Multiple Models
 - 4.4.1 Comparing model performances
 - 4.4.2 Ensemble models

Review log-linear model

WestlakeNLP

- Target: P(y|x)
- Parameterization

$$\begin{cases} P(y|x) = \sigma(\vec{\theta} \cdot \vec{\phi}(x)) \\ P(y|x) = softmax \ (\vec{\theta} \cdot \vec{\phi}(x,y)) \end{cases}$$

• Testing

$$\hat{y} = \operatorname*{argmax}_{y} P(y|x)$$

• Training MLE using SGD

Test scenario of log-linear models User WestlakeNLP

• Given a test input *x*, find $\hat{y} = \arg \max_{y \in C} P(y|x)$, which is equal to

$$\arg\max_{y\in C}\vec{\theta}\cdot\vec{\phi}(x,y)$$

• The test scenario of log-linear models are identical to those of SVMs and perceptron models

• Binary log-linear models are also called logistic regression

Comparing with Perceptron Binary Classification

binary log-linear models

Inputs: $D = \{(x_i, y_i)\}|_{i=1}^N$; **Initialisation**: $\vec{\theta} \leftarrow \vec{0}, \alpha \leftarrow \alpha_0, t \leftarrow 0$;

repeat

for
$$i \in [1, ..., N]$$
 do

$$P(y = +1|x_i) \leftarrow \frac{e^{\vec{\theta} \cdot \vec{\phi}(x_i)}}{1+e^{\vec{\theta} \cdot \vec{\phi}(x_i)}};$$
if $y_i = +1$ then

$$\vec{\theta} \leftarrow \vec{\theta} - \alpha \left(P(y = +1|x_i) - 1\right) \vec{\phi}(x_i);$$
else

$$\vec{\theta} \leftarrow \vec{\theta} - \alpha P(y = +1|x_i) \vec{\phi}(x_i);$$
 $t \leftarrow t + 1;$
until $t = T;$
Outputs: $\vec{\theta}$

binary perceptron models

Input: $D = \{(x_i, y_i)\}|_{i=1}^N, y_i \in \{-1, +1\}$ Initialization: $\vec{\theta} \leftarrow \vec{0}; t \leftarrow 0$ repeat for $i \in [1, ..., N]$ do $\begin{vmatrix} z_i \leftarrow \text{SIGN}(\vec{\theta} \cdot \vec{\phi}(x_i)); \\ \text{if } z_i \neq y_i \text{ then} \\ | \vec{\theta} \leftarrow \vec{\theta} + \vec{\phi}(x_i) \times y_i; \\ t \leftarrow t+1; \\ \text{until } t = T; \end{vmatrix}$ **Comparing with Perceptron Multi-class Classification**

multi-class log-linear models

Inputs: $D = \{(x_i, y_i)\}|_{i=1}^N$; **Initialisation** $\vec{\theta} \leftarrow \vec{0}, \alpha \leftarrow \alpha_0, t \leftarrow 0;$ repeat for $i \in [1, ..., N]$ do $\vec{g} \leftarrow \vec{0};$ for $c \in C$ do $P(y = c | x_i) \leftarrow$ $e^{\vec{\theta}\cdot\vec{\phi}(x_i,c')}$ $\vec{g} \leftarrow \vec{g} + \left(\vec{\phi}(x_i,c) - \vec{\phi}(x_i,y_i)\right) P(y=c|x_i);$ $\vec{\theta} \leftarrow \vec{\theta} - \alpha \vec{g}$: $t \leftarrow t + 1;$ until t = T; **Outputs**: $\vec{\theta}$

multi-class perceptron models

Input:
$$D = \{(x_i, c_i)\}|_{i=1}^N, c_i \in C$$

Initialization: $\vec{\theta} \leftarrow \vec{0}$; $t \leftarrow 0$;
repeat
for $i \in [1, ..., N]$ do
 $\begin{vmatrix} z_i \leftarrow \arg \max_{\vec{\beta}} \vec{\theta} \cdot \vec{\phi}(x_i, \vec{\beta}); \\ if z_i \neq c_i \text{ then} \\ | \vec{\theta} \leftarrow \vec{\theta} + \vec{\phi}(x_i, c_i) - \vec{\phi}(x_i, z_i); \\ t \leftarrow t+1; \end{vmatrix}$
until $t = T$;

Contents

WestlakeNLP

- 4.1 Log-Linear Models
 - 4.1.1 Training binary log-linear models
 - 4.1.2 Training multi-class log-linear models
 - 4.1.3 Using log-linear models for classification
- 4.2 SGD training of SVMs

• 4.2.1 Binary classification

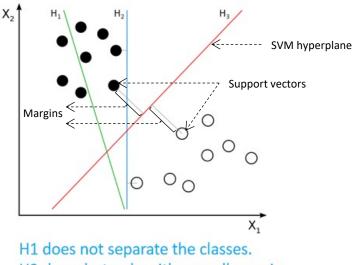
- 4.2.2 A perceptron training objective function
- 4.3 A Generalized Linear Model for Classification
 - 4.3.1 Unified Online Training
 - 4.3.2 Loss Functions
 - 4.3.3 Regularization
- 4.4 Working with Multiple Models
 - 4.4.1 Comparing model performances
 - 4.4.2 Ensemble models

SVM recap

A linear model for binary classification in vector space

- To maximize margin

 (distances form support
 vectors to hyperplane)
- To minimize violation, i.e., ensuring all data residing to the right side



H2 does, but only with a small margin. H3 separates them with the maximum margin.

Binary classification SVM

WestlakeNLP

- The training objective of binary classification SVM : $\operatorname{Minimizing} \frac{1}{2} \left\| \vec{\theta} \right\|^{2} + C \sum_{i} \max \left(0, 1 - y_{i} \left(\vec{\theta} \cdot \vec{\phi}(x_{i}) \right) \right) \text{ given } D = \{ (x_{i}, y_{i}) \} \Big|_{i=1}^{N}$
- Equivalent to minimizing $\sum_{i} \max\left(0, 1 - y_{i}\left(\vec{\theta} \cdot \vec{\phi}(x_{i})\right)\right) + \frac{1}{2}\lambda |\vec{\theta}|^{2}$ hyper-parameters of the model $\lambda = \frac{1}{c}$
- Optimization :
 - stochastic gradient descent. SGD
 - derive local training objective for each train example

Binary classification SVM

WestlakeNLP

- The training objective of binary classification SVM : $\operatorname{Minimizing} \frac{1}{2} \left\| \vec{\theta} \right\|^{2} + C \sum_{i} \max \left(0, 1 - y_{i} \left(\vec{\theta} \cdot \vec{\phi}(x_{i}) \right) \right) \text{ given } D = \{ (x_{i}, y_{i}) \} \Big|_{i=1}^{N}$
- Equivalent to minimizing $\sum_{i} \max\left(0, 1 - y_{i}\left(\vec{\theta} \cdot \vec{\phi}(x_{i})\right)\right) + \frac{1}{2}\lambda |\vec{\theta}|^{2}$ hyper-parameters of the model $\lambda = \frac{1}{c}$
- Optimization :
 - stochastic gradient descent. SGD
 - derive local training objective for each train example
- Sub-gradient :

$$\left\{ egin{array}{ll} \lambda ec{ heta} & ext{if } 1-y_i ec{ heta} \cdot ec{\phi} \left(x_i
ight) \leq 0 \ \lambda ec{ heta} -y_i ec{\phi} \left(x_i
ight) & ext{otherwise} \end{array}
ight.$$

Binary classification SVM

WestlakeNLP

SGD training for binary classification SVM

Inputs: $D = \{(x_i, y_i)\}|_{i=1}^N$; **Initialisation**: $\vec{\theta} \leftarrow \vec{0}, \alpha \leftarrow \alpha_0, t \leftarrow 0;$ repeat for $i \in [1, \ldots, N]$ do $\begin{vmatrix} \mathbf{i}\mathbf{f} & y_i \vec{\theta} \cdot \vec{\phi}(x_i) < 1 \text{ then} \\ & \left| \begin{array}{c} \mathbf{i}\mathbf{f} & y_i \vec{\theta} \cdot \vec{\phi}(x_i) < 1 \text{ then} \\ & \left| \begin{array}{c} \vec{\theta} \leftarrow \vec{\theta} - \alpha \left(\lambda \vec{\theta} - y_i \vec{\phi}(x_i)\right); \\ \mathbf{else} \\ & \left| \begin{array}{c} \vec{\theta} \leftarrow \vec{\theta} - \alpha \lambda \vec{\theta}; \\ t \leftarrow t + 1; \\ \end{array} \right. \end{vmatrix}$ until t = T; Outputs: $\vec{\theta}$

Multi-class classification

WestlakeNLP

- The training objective of multi-class SVM is to minimize $\frac{1}{2} |\vec{\theta}||^2 + C \sum_i \max\left(0, 1 - \vec{\theta} \cdot \vec{\phi}(x_i, y_i) + \max_{c \neq y_i} \vec{\theta} \cdot \vec{\phi}(x_i, c)\right)$
- Equivalent to minimizing

$$\sum_{i} \max\left(0, 1 - \vec{\theta} \cdot \vec{\phi}(x_{i}, y_{i}) + \max_{c \neq y_{i}} \vec{\theta} \cdot \vec{\phi}(x_{i}, c)\right) + \frac{1}{2} \lambda |\vec{\theta}|^{2}$$

where $(x_{i}, y_{i}) \in D, \lambda = \frac{1}{c}$.

• Sub-gradient for each training example:

$$\left\{ egin{array}{ll} \lambda ec{ heta} & ext{if } 1 - ec{ heta} \cdot ec{\phi}(x_i,y_i) + & ec{ heta} \cdot ec{\phi}\left(x_i,z_i
ight) \leq 0 \ \lambda ec{ heta} - \left(ec{\phi}\left(x_i,y_i
ight) - ec{\phi}\left(x_i,z_i
ight)
ight) & ext{otherwise} \ ext{where } \mathsf{z}_{\mathbf{i}} = rg\max_{c
eq y_{\mathbf{i}}} ec{ heta} \cdot ec{\phi}(x_{\mathbf{i}},c). \end{array}
ight.$$

Multi-class classification SVM

Inputs: $D = \{(x_i, y_i)\}|_{i=1}^N, y_i \in C;$ **Initialisation** $\vec{\theta} \leftarrow 0, t \leftarrow 0$: repeat for $i \in [1, ..., N]$ do $\begin{vmatrix} \vec{g} \leftarrow \vec{0}; \\ z_i \leftarrow \arg \max_{c \neq y_i} \vec{\theta} \cdot \vec{\phi}(x_i, c); \\ \mathbf{if} \ \vec{\theta} \cdot \vec{\phi}(x_i, y_i) - \vec{\theta} \cdot \vec{\phi}(x_i, z_i) < 1 \text{ then} \\ | \ \vec{g} \leftarrow \vec{g} - (\vec{\phi}(x_i, y_i) - \vec{\phi}(x_i, z_i)); \\ \vec{\theta} \leftarrow \vec{\theta} - \alpha(\vec{g} + \lambda \vec{\theta}); \\ t \leftarrow t + 1; \end{vmatrix}$ until t = T; **Outputs**: $\vec{\theta}$;

Contents

WestlakeNLP

- 4.1 Log-Linear Models
 - 4.1.1 Training binary log-linear models
 - 4.1.2 Training multi-class log-linear models
 - 4.1.3 Using log-linear models for classification
- 4.2 SGD training of SVMs
 - 4.2.1 Binary classification

• 4.2.2 A perceptron training objective function

- 4.3 A Generalized Linear Model for Classification
 - 4.3.1 Unified Online Training
 - 4.3.2 Loss Functions
 - 4.3.3 Regularization
- 4.4 Working with Multiple Models
 - 4.4.1 Comparing model performances
 - 4.4.2 Ensemble models

Comparing with Perceptron Binary Classification

WestlakeNLP

binary SVM models

Inputs: $D = \{(x_i, y_i)\}|_{i=1}^N$; **Initialisation**: $\vec{\theta} \leftarrow \vec{0}, \alpha \leftarrow \alpha_0, t \leftarrow 0$; **repeat**

for $i \in [1, ..., N]$ do $\begin{vmatrix} \mathbf{if} \ y_i \vec{\theta} \cdot \vec{\phi}(x_i) < 1 \text{ then} \\ \mid \vec{\theta} \leftarrow \vec{\theta} - \alpha \left(\lambda \vec{\theta} - y_i \vec{\phi}(x_i)\right); \\ else \\ \mid \vec{\theta} \leftarrow \vec{\theta} - \alpha \lambda \vec{\theta}; \\ t \leftarrow t + 1; \\ until \ t = T; \\ Outputs: \vec{\theta} \end{vmatrix}$ binary perceptron models

Input: $D = \{(x_i, y_i)\}|_{i=1}^N, y_i \in \{-1, +1\}$ Initialization: $\vec{\theta} \leftarrow \vec{0}$; $t \leftarrow 0$ repeat for $i \in [1, ..., N]$ do $\begin{vmatrix} z_i \leftarrow \text{SIGN}(\vec{\theta} \cdot \vec{\phi}(x_i)); \\ \text{if } z_i \neq y_i \text{ then} \\ | \vec{\theta} \leftarrow \vec{\theta} + \vec{\phi}(x_i) \times y_i; \\ t \leftarrow t+1; \\ \text{until } t = T; \end{vmatrix}$

Comparing with Perceptron Multi-class Classification

multi-class perceptron models

multi-class SVM models

Inputs: $D = \{(x_i, y_i)\}|_{i=1}^N, y_i \in C;$ **Initialisation** $\vec{\theta} \leftarrow 0, t \leftarrow 0;$ repeat for $i \in [1, ..., N]$ do $\vec{g} \leftarrow 0;$ $z_i \leftarrow \arg \max_{c \neq v_i} \vec{\theta} \cdot \vec{\phi}(x_i, c);$ if $\vec{\theta} \cdot \vec{\phi}(x_i, y_i) - \vec{\theta} \cdot \vec{\phi}(x_i, z_i) < 1$ then $\vec{g} \leftarrow \vec{g} - (\vec{\phi}(x_i, y_i) - \vec{\phi}(x_i, z_i));$ $\vec{\theta} \leftarrow \vec{\theta} - \alpha(\vec{g} + \lambda \vec{\theta}):$ $t \leftarrow t + 1;$ until t = T; **Outputs**: $\vec{\theta}$;

Input: $D = \{(x_i, c_i)\}|_{i=1}^N, c_i \in C$ Initialization: $\vec{\theta} \leftarrow \vec{0}$; $t \leftarrow 0$; repeat for $i \in [1, ..., N]$ do $\begin{vmatrix} z_i \leftarrow \arg \max_{\vec{z}} \vec{\theta} \cdot \vec{\phi}(x_i, \vec{z}); \\ if \ z_i \neq c_i \text{ then} \\ | \vec{\theta} \leftarrow \vec{\theta} + \vec{\phi}(x_i, c_i) - \vec{\phi}(x_i, z_i); \\ t \leftarrow t+1; \end{vmatrix}$ until t = T;

- Comparison with perceptron models
 - Checks if $y_i \left(\vec{\theta} \cdot \vec{\phi}(x_i) \right) \le 1$ instead of $y_i \left(\vec{\theta} \cdot \vec{\phi}(x_i) \right) \le 0$
 - Additional regularization term $\lambda \vec{\theta}$
 - A learning rate α to weight the parameter update

A perceptron training objective function **U** WestlakeNLP

• Perceptron updates can also be viewed as SGD training of a certain objective function.

• The training objective is to minimize $\sum_{i=1}^{N} \max\left(0, -\vec{\theta} \cdot \vec{\phi}(x_i, y_i) + \max_{c} \vec{\theta} \cdot \vec{\phi}(x_i, c)\right)$

WestlakeNLP

- 4.1 Log-Linear Models
 - 4.1.1 Training binary log-linear models
 - 4.1.2 Training multi-class log-linear models
 - 4.1.3 Using log-linear models for classification
- 4.2 SGD training of SVMs
 - 4.2.1 Binary classification
 - 4.2.2 A perceptron training objective function

• 4.3 A Generalized Linear Model for Classification

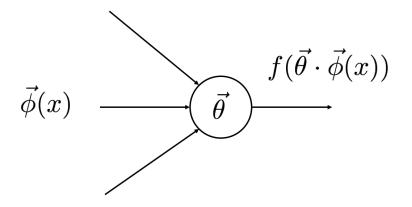
- 4.3.1 Unified Online Training
- 4.3.2 Loss Functions
- 4.3.3 Regularization
- 4.4 Working with Multiple Models
 - 4.4.1 Comparing model performances
 - 4.4.2 Ensemble models

Generalized linear classification model

- Discriminative models
 - Perceptron
 - SVM
 - Log-linear models
- Model form identical $score(y|x) \propto f(\vec{\theta} \cdot \vec{\phi}(x, y))$
- Testing scenario, criteria identical $y = \arg \max_{y'} score(y'|x) = \arg \max_{y'} \vec{\theta} \cdot \vec{\phi}(x, y')$
- Training different

Generalized linear classification model

Model and Testing (binary classification case)



- parameter vector $\vec{\theta}$
- feature vector $\vec{\phi}$
- output class label y using the dot product $\vec{\theta} \cdot \vec{\phi}$
- f activation function

WestlakeNLP

- 4.1 Log-Linear Models
 - 4.1.1 Training binary log-linear models
 - 4.1.2 Training multi-class log-linear models
 - 4.1.3 Using log-linear models for classification
- 4.2 SGD training of SVMs
 - 4.2.1 Binary classification
 - 4.2.2 A perceptron training objective function
- 4.3 A Generalized Linear Model for Classification

• 4.3.1 Unified Online Training

- 4.3.2 Loss Functions
- 4.3.3 Regularization
- 4.4 Working with Multiple Models
 - 4.4.1 Comparing model performances
 - 4.4.2 Ensemble models

Unified Online Training

WestlakeNLP

• All by SGD training

Inputs: $D = \{(x_i, y_i)\}|_{i=1}^N$; Initialization: $\vec{\theta} \leftarrow \vec{0}, t \leftarrow 0$; repeat $\begin{vmatrix} \text{for } i \in [1 \dots N] \text{ do} \\ | \text{ PARAMETERUPDATE}(x_i, y_i); \\ t \leftarrow t+1; \\ \text{until } t = T; \\ \text{Outputs: } \vec{\theta}; \end{vmatrix}$

• Given a set of training data $D = \{(x_i, y_i)\}|_{i=1}^N$, the algorithm goes over D for T iterations, processing each training example (x_i, y_i) , and update model parameters when necessary.

Unified Online Training

Parameter Update (x_i, y_i) for perceptrons, SVMs and log-linear models

Feature	Model	Update rule
Binary classification	Perceptron	$y_i \vec{\phi}(x_i)$ if $y_i \left(\vec{\theta} \cdot \vec{\phi}(x_i) \right) < 0$
	SVM	$\begin{cases} \alpha y_i \vec{\phi}(x_i) - \alpha \lambda \vec{\theta} \text{ if } y_i \left(\vec{\theta} \cdot \vec{\phi}(x_i) \right) \leq 1 \\ -\alpha \lambda \vec{\theta} \text{otherwise} \end{cases}$
	Log-linear models	$\begin{cases} \alpha(1 - P(y = +1 x_i))\vec{\phi}(x_i) \text{ if } y_i = +1 \\ \alpha(-P(y = +1 x_i))\vec{\phi}(x_i) \text{ otherwise} \end{cases}$

Unified Online Training

Multi-class classification	Perceptron	$ec{\phi}(x_i, y_i) - ec{\phi}(x_i, z_i) ext{ if } z_i \neq y_i$ $z_i = rg \max_{\mathbf{c}} ec{ heta} \cdot ec{\phi}(x_i, \mathbf{c})$
	$_{\rm SVM}$	$\begin{cases} \alpha \Big(\vec{\phi}(x_i, y_i) - \vec{\phi}(x_i, \mathbf{c}) \Big) - \alpha \lambda \vec{\theta} \\ \mathbf{if} \ \vec{\theta} \cdot \vec{\phi}(x_i, y_i) - \vec{\theta} \cdot \vec{\phi}(x_i, z_i) \leqslant 1 \\ -\alpha \lambda \vec{\theta} \text{otherwise} \end{cases} \\ z_i = \arg \max_{\mathbf{c} \neq y_i} \vec{\theta} \cdot \vec{\phi}(x_i, \mathbf{c}) \end{cases}$
	Log-linear models	$\alpha \sum_{\mathbf{c}} \left(\vec{\phi}(x_i, y_i) - \vec{\phi}(x_i, \mathbf{c}) \right) P(y = \mathbf{c} x_i)$

- 4.1 Log-Linear Models
 - 4.1.1 Training binary log-linear models
 - 4.1.2 Training multi-class log-linear models
 - 4.1.3 Using log-linear models for classification
- 4.2 SGD training of SVMs
 - 4.2.1 Binary classification
 - 4.2.2 A perceptron training objective function
- 4.3 A Generalized Linear Model for Classification
 - 4.3.1 Unified Online Training
 - 4.3.2 Loss Functions
 - 4.3.3 Regularization
- 4.4 Working with Multiple Models
 - 4.4.1 Comparing model performances
 - 4.4.2 Ensemble models

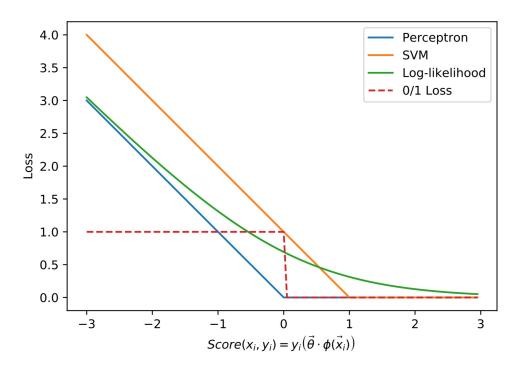
Loss Functions

• The training objectives for linear models can be regarded as to minimize different **loss functions** of a model over a training set.

Feature	Model	Loss function
Binory	Perceptron	$\frac{\sum_{i=1}^{N} \max\left(0, -y_i \vec{\theta} \cdot \vec{\phi}(x_i)\right)}{\sum_{i=1}^{N} \max\left(0, 1 - y_i \vec{\theta} \cdot \vec{\phi}(x_i)\right) + \frac{1}{2} \lambda \vec{\theta} ^2}$
Binary classification	SVM	$\sum_{i=1}^{N} \max(0, 1 - y_i \vec{\theta} \cdot \vec{\phi}(x_i)) + \frac{1}{2} \lambda \vec{\theta} ^2$
	Log-linear models	$\sum_{i=1}^{N} \log(1 + e^{-y_i \vec{\theta} \cdot \vec{\phi}(x_i)})$
Multi-class classification	Perceptron	$\sum_{i=1}^{N} \max\left(0, -\vec{\theta} \cdot \vec{\phi}(x_i, y_i) + \vec{\theta} \cdot \vec{\phi}(x_i, \arg\max_{\mathbf{c}} \vec{\theta} \cdot \vec{\phi}(x_i, \mathbf{c}))\right)$
	SVM	$\sum_{i=1}^{N} \max\left(0, 1 - \vec{\theta} \cdot \vec{\phi}(x_i, y_i) + \max_{\mathbf{c} \neq y_i} \vec{\theta} \cdot \vec{\phi}(x_i, \mathbf{c})\right) + \frac{1}{2} \lambda \vec{\theta} ^2$
	Log-linear models	$\sum_{i=1}^{N} \left(\log \left(\sum_{\mathbf{c}} e^{\vec{\theta} \cdot \vec{\phi}(x_i, \mathbf{c})} \right) - \vec{\theta} \cdot \vec{\phi}(x_i, y_i) \right)$

Different types of loss functions

- Hinge loss: the loss functions of SVMs and perceptrons
- Log-likelihood loss: the loss functions for log-linear models
- **0/1 loss**: loss is 1 for an incorrect output and 0 for a correct output.



Risks

• The true **expected risk** of a linear model with parameter can be formulated as

$$risk(\vec{\theta}) = \sum_{x,y} loss(\vec{\theta} \cdot \phi(x,y)) P(x,y),$$

which cannot be calculated, we use **empirical risk** as a proxy

$$\widetilde{risk}(\vec{\theta}) = \frac{1}{N} \sum_{i=1}^{N} loss\left(\vec{\theta} \cdot \phi(x_i, y_i)\right), (x_i, y_i) \in D$$

- 4.1 Log-Linear Models
 - 4.1.1 Training binary log-linear models
 - 4.1.2 Training multi-class log-linear models
 - 4.1.3 Using log-linear models for classification
- 4.2 SGD training of SVMs
 - 4.2.1 Binary classification
 - 4.2.2 A perceptron training objective function
- 4.3 A Generalized Linear Model for Classification
 - 4.3.1 Unified Online Training
 - 4.3.2 Loss Functions
 - 4.3.3 Regularization
- 4.4 Working with Multiple Models
 - 4.4.1 Comparing model performances
 - 4.4.2 Ensemble models

Regularization

• SVM training objective

$$L = \sum_{i=1}^{N} \max(0, 1 - y_i \vec{\theta} \cdot \vec{\phi}(x_i)) + \frac{1}{2} \lambda ||\vec{\theta}||^2$$

• A large element in the parameter vector $\vec{\theta}$ implies higher reliance of the model to its corresponding feature, sometimes unnecessarily much. **L2 regularization** : $\frac{1}{2}\lambda ||\vec{\theta}||^2$ and **L1 regularization** : $\lambda ||\vec{\theta}||_1$ minimize a polynomial of $\vec{\theta}$ in loss functions, reduce over-fitting of models on given training data.

- 4.1 Log-Linear Models
 - 4.1.1 Training binary log-linear models
 - 4.1.2 Training multi-class log-linear models
 - 4.1.3 Using log-linear models for classification
- 4.2 SGD training of SVMs
 - 4.2.1 Binary classification
 - 4.2.2 A perceptron training objective function
- 4.3 A Generalized Linear Model for Classification
 - 4.3.1 Unified Online Training
 - 4.3.2 Loss Functions
 - 4.3.3 Regularization
- 4.4 Working with Multiple Models
 - 4.4.1 Comparing model performances
 - 4.4.2 Ensemble models

Comparing model performances

- Different models results from:
 - different training objectives (large margin or log-likelihood)
 - different feature definitions
 - different hyperparameters (number of training iterations, learning rate)

• Need to compare accuracies on testset

• Can make combination to exploit complementary strengths

Significance test

• Model A 93% Model B 92%

Model A is better?

• Null hypothesis

The probability of null hypothesis – significance level p < 0.01 / p < 0.05 / p < 0.001 / p < 0.00001

- Use the set of test results to evaluate the probability of null hypothesis.
- t-test

Hands on

WestlakeNLP

T test using python and numpy

```
import the packages
```

import numpy as np
from scipy import stats

Define 2 random distributions with size N

```
N = 10
a = np.random.randn(N) + 2
b = np.random.randn(N)
```

```
print(a,b)
```

```
[1.36929026 0.45171207 1.980284 2.69894659 3.58459313
1.02503278 1.5443674 3.75178741 0.79744317 1.48595977]
```

[1.97056194 -0.44926516 -0.1049745 -1.02613361 -2.1329443 0.7991724 0.60720041 1.22176851 -1.22300267 -0.21052362]

Hands on

Calculate the standard derivation

```
var_a = a.var(ddof=1)
var_b = b.var(ddof=1)
s = np.sqrt((var_a + var_b)/2)
```

Calculate the t-statistics and compare with the critical t-value

```
t = (a.mean() - b.mean())/(s*np.sqrt(2/N))
df = 2*N -2
p = 1 - stats.t.cdf(t, df=df)
```

Results:

```
print("t = " + str(t))
print("p = " + str(2*p))
t = 4.26411975457851
p = 0.0004668051407590301
```

Hands on

Cross checking with the internal scipy function

```
t2, p2 = stats.ttest_ind(a, b)
```

Results:

print("t = " + str(t2))
print("p = " + str(p2))
t = 4.264119754578509
p = 0.0004668051407589875

- 4.1 Log-Linear Models
 - 4.1.1 Training binary log-linear models
 - 4.1.2 Training multi-class log-linear models
 - 4.1.3 Using log-linear models for classification
- 4.2 SGD training of SVMs
 - 4.2.1 Binary classification
 - 4.2.2 A perceptron training objective function
- 4.3 A Generalized Linear Model for Classification
 - 4.3.1 Unified Online Training
 - 4.3.2 Loss Functions
 - 4.3.3 Regularization
- 4.4 Working with Multiple Models
 - 4.4.1 Comparing model performances
 - 4.4.2 Ensemble models

Ensemble models

- **Ensemble approach**: a combination of multiple models for better accuracies.
- **Voting**: a simple method to ensemble different models.

Given a set of models $M = (m_1, m_2, ..., m_{|M|})$ and output classes $C = (c_1, c_2, ..., c_{|C|})$, the output class y for a given input x can be decided by counting the vote (*hard* 0/1votes):

 $v_i = \sum_{j=1}^{|M|} \mathrm{b1}(y(m_j), c_i)$

- *majority voting* chooses the class label that receives more than half the total votes
- *plurality voting* chooses the class with the most votes.
- More fine-grained voting methods are soft voting and weighted voting.

Ensemble models

• Stacking:

use the outputs of one model as features to inform another model.

• Training for stacking

the stacking method trains *A* after *B* is trained.

• We use **K-fold jackknifing** to make model *B* output accuracies on the training data as close to the test scenario as possible.

Training set	Model	Test set
D_2,\ldots,D_k	B_1	D_1
D_1, D_3, \ldots, D_k	B_2	D_2
$D_1, D_2,, D_{k-1}$	B_k	D_k

Ensemble models

• **Bagging** use different subsets of *D* to obtain different models and then ensemble them. Voting is then performed between models given a test case. Bagging can outperform a single model for many tasks.

Model	Feature Type	Features
В	Bag-of-words	$w_1 =$ Ronaldo, $w_2 =$ donated, $w_3 = $ €, $w_4 =$ 600,000, $w_5 =$ to, $w_6 =$ charity
Α	Bag-of-words + B's output label	$w_1 =$ Ronaldo, $w_2 =$ donated, $w_3 = $ €, $w_4 =$ 600,000, $w_5 =$ to, $w_6 =$ charity, $y_B =$ sports
Α	Bag-of-words + B's probability outputs	$w_1 =$ Ronaldo, $w_2 =$ donated, $w_3 = $ €, $w_4 =$ 600,000, $w_5 =$ to, $w_6 =$ charity, $P(y_B = sports) \in [0.6, 0.7],$ $P(y_B = finance) \in [0.2, 0.3]$

Co-training and self-training

- *Data augmentation*.
- *Semi-supervised* learning use different models trained on *D* to predict the labels on a set of unlabeled data *U*, augmenting *D* with the outputs that most models agree on.
- the more accurate the baseline models are on *U*, the more likely that the new data form *U* can be correct and useful.

Co-training

```
Inputs: D = \{(x_i, y_i)\}|_{i=1}^N, U = \{x'_i\}|_{i=1}^M, models A and B;
Initialization: t \leftarrow 0;
repeat
    t \leftarrow t+1;
    \operatorname{TRAIN}(A, D);
    \operatorname{TRAIN}(B, D);
    for x'_i \in U do
       z'_A \leftarrow \text{PREDICT}(A, x'_i);
        z'_B \leftarrow \text{PREDICT}(B, x'_i);
        if z'_A = z'_B = z'_i and CONFIDENT(A, x'_i, z'_i) and
          CONFIDENT(B, x'_i, z'_i) then
         ADD(D, (x'_i, z'_i));
           REMOVE(U, (x'_i));
until t = T;
```

Self-training


```
Inputs: D = \{(x_i, y_i)\}|_{i=1}^N, U = \{x'_i\}|_{i=1}^M, \text{ model } A;
Initialisation: t \leftarrow 0;
repeat
    t \leftarrow t+1;
    \operatorname{TRAIN}(A, D);
    for x'_i \in U do
       z'_i \leftarrow \text{PREDICT}(A, x'_i);
       if CONFIDENT(A, x'_i, z'_i) then
           ADD(D, (x'_i, z'_i));
           REMOVE(U, (x'_i));
until t = T;
```

Summary

- Log-linear models for binary and multi-class classification
- Stochastic Gradient Descent (SGD) training of log-linear models and SVMs
- A generalized linear discriminative model for text classification
- The correlation between SVMs, perceptrons and log-linear models in terms of training objective (loss) functions and regularization terms
- Significance testing
- Ensemble methods for integrating different models